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Wave Propagation in a Nonparabolic
Graded-Index Medium

RICCARDO PRATESI N LAURA RONCHI

Abstract-Wave propagation in a slab of graded-index medium whose

refractive index is a polynomial expression of the transverse coordinate is
treated by a simple generalization of the theory commonly adopted for the
square-law media.

WAVE PROPAGATION in graded-index media has

attracted much attention in recent years, especially

as regards the square-law media, whose refractive index n

is given by

n2(x) = n;— nzxz. (1)

For such media, exact solutions of the (scalar) wave

equation exist [1] and are expressed by Hermite–Gaussian

functions, namely by

‘m(x)=Hm(+)ex’(-$+i~~z)‘2)
where

and Hn denotes the Hermite polynomial of order m.

However, (1) is usually only the paraxial approximation

of the square of the refractive index of a medium, which

clearly is more accurate for narrower beams. Such an

approximation can be improved by assuming

n2(x) = n:– n2x2 + n4x4– nbxG+ “ - “ = Pi(x) (4)

where PI indicates an (even) polynomial of degee 1 larger

than 2. The propagation in media specified by a poly-

nomial expression of n2 of type (4) has been studied by

several authors [2], [3], and [4] with different methods and

different approximations. The wave-optics procedure de-

scribed here appears to be easier and yields results that

are formally simpler than the previous ones. By limiting

ourselves, for simplicity, to the TE case, our approxima-

tion consists in looking for solutions of the wave equation

of the type

()Urn(x) = Km ~ ~ exp (ikQJx) + i~z) (5)

where Km and &?j are polynomials of degree m and j,
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respectively. For simplicity, we consider here only the

cases where Llj(x) is an even polynomial of x, so that Km

turns out to be either even or odd, depending on the

parity of m. We will assume m to be even, too; however,

the results are completely analogous when m is odd.

The introduction of (5) into the wave equation yields a

polynomial equation in x, namely,

2 K“ +2fl ~Q:K; + ikQJK~
~m

+[k2(P, –q2)-f12]K~ =() (6)

where the primes indicate derivatives with respect to the

argument.

If we choose 1= 2j – 2, as indicated by the last term on

the left-hand side of (8), which is the highest order term,

(6) gives rise to m/2+ j equations (obtained by letting the

coefficient of each power of x vanish), while the parame-

ters to be determined are m/2+ j/2+1, namely, the m/2

coefficients of K~, which is to be determined apart from a

constant factor, the j/2 coefficients of Qj, which is to be

determined apart from an additive constant, and ~. The

number of equations, therefore, is equal to the number of

unknowns, only if j = 2 (and, therefore, l= 2, which corre-

sponds to a quadratic medium). In any other case, the

number of equations is larger than the number of un-

knowns. Consequently, for 1>2, the wave equation

cannot be solved exactly but only approximately. The

approximation consists in considering not all equations

derivable from (6), but only the first m/2 + 1/2+1 equa-

tions, involving all powers of x up to x m + 1. In the present

note we consider the case l= j = 4, but the procedure can

be extended to any order.

We will put

The treatment is

X4L?4(x)=:+@.

simplified by assuming

differential equation of the type -

(7)

Km to satisfy a

K;(X) –2Xp(X)K; + V(X) K~(X) =0 (8)

where X indicates the argument ~ x/w, and p(X),

V(X) denote two polynomials to be determined. The

introduction of (8) into (6) yields

(9)
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()

– :~ v m ; +ikQ4+k2(P4– Q~)–p2=o. (lo)
VV2

Equation (10) may be satisfied if P(X) is a second-order

polynomial. Since V(X) has the same degree as P(X), as

follows from (8), we will write

p(x) = 1+p2x2

v(x) =2rn(l + Vo)+ V2X2. (11)

The coefficients p2, Vo, ad V4 are not all independent Of

one another, since the condition has to be satisfied, that
Km is a polynomial. Such coefficients are functions of n~

and tend to zero when n4 tends to zero, since Km tends to
the Hermite polynomial of order m, for which P(X)= 1

and V(X) = 2m. In the limit of very small %, the following

relations may be verified (see (A5) and (A7) of the Append-

ix):

V2 = 2mp2

v~= ;(nr– l)p~. (12)

From (9) it follows

ik 1—= ——
2q @

ik 1—— (13)
~ = w4p2”

Then, (10), by neglecting all powers of x larger than X4,

yields

~2=k2n; +:-; (l+vo) (14)

and

k2
~+~V2–3~=–k2n2
4 W4 Q’

2
— = n4.
qQ3

(15)

lJp to the first order in n4, (15) with the help of (13) and

(12) yields

1 nd

pz=–~p
(16)

and

1—=
W2 [

~kfi 1–=%
4k n~lz

1

(17)

Then (14) yields

~2=k2n~-k(2m+l)@ +~~(2m2+2m+l)l (18)
2

which coincides with the expressions given in [3] and [4]

and applied in [5].

In (1’7) and (18) terms of the order of 1/ ik have been

neglected compared with terms of the order of 1. It can

8s/

also be noted that the above formulas hold for a possibly

complex refractive index. When n(x) is complex, the sign

of @ is to be so chosen as to satisfy tbe radiation

conditions at infinity, for Ixl ~ co.

By solving (8) in a first approximation with lrespect to

n4, one finds (see Appendix)

[
Km= 2c~Xn 1– ~p2(m – n)(3m + n –4)

1

where c. denotes the coefficient of X“ in the Hermtite

polynomial of order m and argument X; hence

[ 1K.= 1– f(3m–4)p2 H.(X)+ ~(2m–3)

“P2x~m’(x) + +P2XZ’’(X)

( )
s 1 – fp2X2 H~(X) + ~p2(2m –3 +2X2) XH~’(.Y).

(19)

In conclusion, a graded-index medium specified by

n2 = n; —n2x2 + n4x4

sustains beams of the type

where 1/ W2 is given by the first equation in (17), p2 by

(16), ~ by (18), and Km satisfies (8). In a first approxima-

tion with respect to n4, Km is given by (19), with X

=flx/w.

APPENDIX

Let us put

with

and Cn

nomial

Km(X) =Za.Xn (Al)

a.= c.(1 +A.) (A2)

denotes the nth coefficient of the Herrnite poly-

of order m, namely,

c = (– 1)(’’’2)”2” m ,
)()

n d:-: ! y “’ ‘orneven’ ‘)<n<’n
IL Al

Cn= o, for n odd, n<O, n>m. (A3)

The introduction of (Al) into (8), where p(X) and V(x)
are given by (1 1), yields

Xn(n– l)a.X”-2–2(1 +p2X2)Zna.X”

+ [2m(l + V,)+ V2X2]2a.X”=0 (A4)

hence equating to zero the coefficient of Xm’2

V2=2mp2. (A5)

Moreover, (A4) yields the recurrent formula

(n+2)(n+ l)a.+2+2[(m- n)+mvo]a.

+ 2(m – n + 2)p2a. -;! = O. (A6)
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The condition am+2 = O can be written as By choosing & so that An= O, (A9) can be rewritten as

m VOa~ + 2p2a~ _ z= O

and, therefore,

VO= ~(m– l)p2 (A7) ~11

where, for small VO and p2, we have used the expression
[2]

an = c.. Then, by using (A2), (A3), and (A7), (A6) can be p]

written in the form

An+2 –A. = ~Z( rn+n– 1)P2, n even (A8) ‘4]

which yields
[5]

An=~n(2m+n–4)p2+&. (A9)

A~=–~ 8( m – n)(3m + n –4)p2. (AIO)
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The Screening Potential Theory of Excess
Conduction Loss at Millimeter and

Submillimeter Wavelengths

YEN-CHU WANG, MEMBER, IEEE

Abstrae—On using the screening potential theory, the room-tempera-
ture excess conduction Ims in copper waveguide is explained and ealeu-
Iated. The low-frequency and long-wavelength conductivity with spatiaf

dispersion has been shown to give 30-percent more conduction loss in
copper at submfflimeter-wave frequency. Good agreement between experi-
mental and theoretical results is obtained.

R ECENT measurements of the surface resistance of

single-crystal copper by Tischer indicate that a

room-temperature anomalous skin effect exists at millime-

ter-wave and upper microwave frequencies [ 1]–[3]. When

extrinsic effects, i.e., surface roughness, waveguide size

deviation, temperature, corrosion, work hardening, and
oxygen absorption are taken into account and subse-

quently excluded, there is observed an anomalous skin

effect which gives a 13.5-percent higher measured surface

resistance than the classical theory can account for at 35

GHz and room temperature. It increases to 20 percent

higher at 70 GHz. It is also reported for gold [5].
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It is easily seen that the anomaly cannot be explained

by either the Drude model or Pippard’s anomalous skin

effect. The anomaly can be instead attributed to the

spatial dispersion of the conductivity u(q, to) due to the

charge-density fluctuation induced screening potential [4].

The conductivity in the MKS units can be calculated from

Harrison’s dielectric function [4] (see Appendix) as given

by
u(q, a) = u, + iui = – 3ico7@/(qw)2 (1)

~_ l–ico~

(

In I–iti+iqm

2iqvr l–iti-iq~
K= )

(2)

l–~ln
(

1– iu~ + iqor

2iqvT 1– iur – iqm )

where for copper ~ =2.37X 10– 14s,v = OF= 1.58X 106 m/s,

UO= e2n0 ~/m= dc conductivity =5.80x 107 S/m; all field

variables vary according to exp i (q-r– d). In deriving (1)

and (2) it is assumed that the currents and fields will have

the same dependence on position, which is reasonable

because of the small mean-free path at low frequency and

room temperature; consequently, electrons moving at all
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