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in a Nonparabolic

Graded-Index Medium

RICCARDO PRATESI anp LAURA RONCHI

Abstract—Wave propagation in a slab of graded-index medium whose
refractive index is a polynomial expression of the transverse coordinate is
treated by a simple generalization of the theory commonly adopted for the
square-law media.

AVE PROPAGATION in graded-index media has

attracted much attention in recent years, especially

as regards the square-law media, whose refractive index n
is given by

n*(x)=n2— nyx* (N

For such media, exact solutions of the (scalar) wave

equation exist [1] and are expressed by Hermite—Gaussian
functions, namely by

um(x)=Hm(—\%i) exp (— -:i—z +i,8mz) 2)

where
a__ 2
kVn,

B2=kn}—k(2m+1)Vn,

and H,, denotes the Hermite polynomial of order m.
However, (1) is usually only the paraxial approximation
of the square of the refractive index of a medium, which
clearly is more accurate for narrower beams. Such an
approximation can be improved by assuming

w

)

4)

where P, indicates an (even) polynomial of degree / larger
than 2. The propagation in media specified by a poly-
nomial expression of n? of type (4) has been studied by
several authors [2], [3], and [4] with different methods and
different approximations. The wave-optics procedure de-
scribed here appears to be easier and yields results that
are formally simpler than the previous ones. By limiting
ourselves, for simplicity, to the TE case, our approxima-
tion consists in looking for solutions of the wave equation
of the type

U, (x)= Km(\/f %) exp (ikQ;(x)+iBz)

n2(x)=nd — nyx*+ nyx*— ngx+ - - = P(x)

®)

where K,, and {; are polynomials of degree m and j,
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respectively. For simplicity, we consider here only the
cases where {4(x) is an even polynomial of x, so that K,
turns out to be either even or odd, depending on the
parity of m. We will assume m to be even, too; however,
the results are completely analogous when m is odd.

The introduction of (5) into the wave equation yields a
polynomial equation in x, namely,

2

Zkp+2v3 Kop L aok,
w

+[ k(P -2~ B%]K,=0 (6)

where the primes indicate derivatives with respect to the
argument.

If we choose /=2j-2, as indicated by the last term on
the left-hand side of (8), which is the highest order term,
(6) gives rise to m/2+ j equations (obtained by letting the
coefficient of each power of x vanish), while the parame-
ters to be determined are m/2+;/2+ 1, namely, the m /2
coefficients of K,,, which is to be determined apart from a
constant factor, the j/2 coefficients of &;, which is to be
determined apart from an additive constant, and 8. The
number of equations, therefore, is equal to the number of
unknowns, only if j=2 (and, therefore, /=2, which corre-
sponds to a quadratic medium). In any other case, the
number of equations is larger than the number of un-
knowns. Consequently, for />2, the wave equation
cannot be solved exactly but only approximately. The
approximation consists in considering not all equations
derivable from (6), but only the first m/2+1/2+1 equa-
tions, involving all powers of x up to x”*’. In the present
note we consider the case /=j=4, but the procedure can
be extended to any order.

We will put

X4

403"

The treatment is simplified by assuming K, to satisfy a
differential equation of the type

94<x)=;‘—;+ )

K, (X)=2Xp(X)K,,+ V(X)K,(X)=0 (8)
where X indicates the argument V2 x/w, and p(X),
V(X) denote two polynomials to be determined. The
introduction of (8) into (6) yields

, o 2x X
1k94+—w2p(\/§ —w)—-—-O ( )
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w

Equation (10) may be satisfied if p(X) is a second-order

polynomial. Since ¥(X) has the same degree as p(X), as
follows from (8), we will write

p(X)=1+p,X?
V(X)=2m(1+ Vo) + VX2 (11)

The coefficients p,, ¥y, and ¥V, are not all independent of
one another, since the condition has to be satisfied that
K, is a polynomial. Such coefficients are functions of n,
and tend to zero when 7, tends to zero, since K, tends to
the Hermite polynomial of order m, for which p(X)=1
and V(X)=2m. In the limit of very small 7, the following
relations may be verified (see (A5) and (A7) of the Appen-
dix):

(V2 £ ik k3P, ~920)~ £2=0. (10)

Vy=2mp,
1
Vo= '2‘(’"'“ Dp,. (12)
From (9) it follows

k__1

2q w?

ik 1
zég =-—P (13)

Then, (10), by neglecting all powers of x larger than x4,
yields

,82=k2n3+1’f—f‘-’§(1+ Vo) (14)
q w
and

"lﬁ"l'in—‘ l]i=—k2n2

q2 w4 Q3
2
— =n, (15)
q0°

Up to the first order in ny, (15) with the help of (13) and
(12) yields

1 ny

== 35 (16)
2k n3/?
and
1 _1 _2m+3 ny
ﬁ‘zk\/”j[l 4k ng/z}
ik 1 ny
=—k—2. (17)
40° 8 Vn,

Then (14) yields
B= K —k(2m+ )V +3 22 @m2+2m+1) (18)
2

which coincides with the expressions given in [3] and [4]
and applied in [5].

In (17) and (18) terms of the order of 1/ik have been
neglected compared with terms of the order of 1. It can
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also be noted that the above formulas hold for a possibly
complex refractive index. When n(x) is complex, the sign
of Vn, is to be so chosen as to satisfy the radiation
conditions at infinity, for |x|—oo.

By solving (8) in a first approximation with respect to
n,, one finds (see Appendix)

Km=ECnX”[1—— %p2(m—n)(3m+n—4)r

where ¢, denotes the coefficient of X” in the Hermite
polynomial of order m and argument X; hence

K,=[1- B Gm—4)p, [ H,(0)+ %(2m——3)
14 l r
‘P XH, (X)+ §P2X2H7 (X)

'=~(1 -7 szz)Hm(X) + -21;- 2,2m—3+2XH)XH,'(X).
(19)

In conclusion, a graded-index medium specified by

n?=nk—n,x>+nyx*

sustains beams of the type
2 4
u,(x,z)= Km(\/f 1) exp | iz~ L —pzx—
w w? wh

where 1/w? is given by the first equation in (17), p, by
(16), B by (18), and K, satisfies (8). In a first approxima-
tion with respect to n,, K, is given by (19), with X
=V2 x/w.

APPENDIX
Let us put
K, (X)=3a,X" (A1)
with
a,=c,(1+4,) (A2)

and ¢, denotes the nth coefficient of the Hermite poly-
nomial of order m, namely,

_1\1/2DnAn
c,,=(—1”)l—n—2—(1n—)!, forneven, 0<n<m
n!(———)! 2
2 2
¢,=0, fornodd, n<0, n>m. (A3)

The introduction of (Al) into (8), where p(X) and V(X)
are given by (11), yields

Sn(n—1)a, X" 2=2(1+p,X*)Zna,X"
+[2m(1+ Vo) + V,X?]2a,X"=0 (A4)

hence equating to zero the coefficient of X m+2

Vy=2mp,. (A5)
Moreover, (A4) yields the recurrent formula
(n+2)(n+1)a,,,+2[(m—n)+mV,]a,
+2(m—n+2)p,a,_,=0. (A6)
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The condition a,,,,=0 can be written as

mVya,, +2p,a,, =0
and, therefore,

Vom 5(m=1p, (A7)

where, for small ¥, and p,, we have used the expression
a, =c,. Then, by using (A2), (A3), and (A7), (A6) can be
written in the form

(A3)

A,,+2-—A,,=%(m+n—1)p2, n even

which yields

1

A,=—-n(2m+n—4)p,+A,. (A9)

oo|

By choosing 4, so that A,, =0, (A9) can be rewritten as

8,= =g (m=n)3m+n—a)p, (A10)
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The Screening Potential Theory of Excess
Conduction Loss at Millimeter and
Submillimeter Wavelengths

YEN-CHU WANG, MEMBER, 1EEE

Abstract—On using the screening potential theory, the room-tempera-
ture excess conduction loss in copper waveguide is explained and calcu-
lated. The low-frequency and long-wavelength conductivity with spatial
dispersion has been shown to give 30-percent more conduction loss in
copper at submillimeter-wave frequency. Good agreement between experi-
mental and theoretical results is obtained.

ECENT measurements of the surface resistance of

single-crystal copper by Tischer indicate that a
room-temperature anomalous skin effect exists at millime-
ter-wave and upper microwave frequencies [1]-[3]. When
extrinsic effects, i.e., surface roughness, waveguide size
deviation, temperature, corrosion, work hardening, and
oxygen absorption are taken into account and subse-
quently excluded, there is observed an anomalous skin
effect which gives a 13.5-percent higher measured surface
resistance than the classical theory can account for at 35
GHz and room temperature. It increases to 20 percent
higher at 70 GHz. It is also reported for gold [5].
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It is easily seen that the anomaly cannot be explained
by either the Drude model or Pippard’s anomalous skin
effect. The anomaly can be instead attributed to the
spatial dispersion of the conductivity o(q, w) due to the
charge-density fluctuation induced screening potential [4].
The conductivity in the MKS units can be calculated from
Harrison’s dielectric function [4] (see Appendix) as given
by

o(q,w)=0,+io,= —3iwre,K /(qur)’ €))
1 —iwr (1—iwr+iqvfr)
11— — n - -
2igor 1 —iwr—igor
K= o @
1 1 —iwr+ igor
l-5—1n - -
2igor 1 —iwr—iqor

where for copper 7=2.37X10"s, v=10,=1.58 X 10° m /s,
0o=e’ny 7/m=dc conductivity=5.80x 10’ S/m; all field
variables vary according to exp i (g:r— wt). In deriving (1)
and (2) it is assumed that the currents and fields will have
the same dependence on position, which is reasonable
because of the small mean-free path at low frequency and
room temperature; consequently, electrons moving at all
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